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SUMMARY 

An improved treatment for the Harten-Yee and Chakravarthy-Osher TVD numerical flux functions in 
general co-ordinates is presented. The proposed formulation is demonstrated by a series of numerical 
experiments for three-dimensional flows around the ONERA-M6 wing. The numerical results indicate that 
it is important to  use a suitable artificial compression parameter in order to obtain more accurate solutions 
around the leading edge of the wing. The two TVD numerical fluxes give excellent results: they capture the 
shock wave without numerical oscillations, they capture the rapid expansion around the leading edge 
sharply, they have self-adjusting mechanisms regarding numerical viscosity and they also have robustness. 
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INTRODUCTION 

The search for better schemes in computational fluid dynamics is continually evolving. First low- 
order-accurate upwind schemes were presented and then higher-order-accurate upwind schemes 
were proposed. The most recent notable improvements in numerical techniques are the devel- 
opment of high-order-accurate non-oscillatory shock capturing schemes such as total variation 
diminishing (TVD) schemes,' uniformly high-order-accurate non-oscillatory (UNO) schemes2 
and uniformly high-order-accurate essentially non-oscillatory (ENO) ~chemes .~  Of the three, 
TVD schemes have already been applied to multidimensional complex fluid flow problems. 

In addition, supercomputers with very fast operational processors and large memory have 
recently been developed and, as a result, three-dimensional flows around simple configurations 
have been numerically solved without difficulty. However, the need to seek better schemes still 
exists in order to capture shock waves and rapid expansions more sharply, to calculate 
hypersonic flows more accurately, to clarify turbulent phenomena, and so on. 

Our interest in this paper is in the evaluation of TVD schemes for the three-dimensional Euler 
equations in general co-ordinates, with emphasis on their application to more practical flow 
problems. Two TVD schemes made practicable by Yee and Harten**' and Chakravarthy and 
Osher6 are chosen. These two algorithms differ in their methods of achieving higher-than-first- 
order TVD schemes. 
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There are three methods of applying TVD numerical fluxes to the flow problem in multi- 
dimensional general co-ordinates: the finite difference method (FDM), the finite element method 
(FEM) and the finite volume method (FVM) (a special version of FEM). FVM departs from FDM 
mainly in three-dimensional applications. Within FDM formulations there are many variations. 
In Reference 7 we suggested a different method of evaluating the numerical fluxes for the 
Harten-Yee and the Chakravarthy-Osher schemes in generalized co-ordinates by use of FDM. 
From the flow fields presented in Reference 7 we prefer our approach over the original 
formulation. 

This paper is intended to confirm the basis of improvements in our earlier work' with more 
extensive numerical experiments towards the practical use of TVD-FDMs. 

GOVERNING EQUATIONS 

The independent variables in Cartesian co-ordinates are denoted by 

(t, xk),  k = 1, 2, 3 7  (1) 

(2, (I), 1 = 1, 2, 3. (2) 

and those in general co-ordinates are denoted by 

The three-dimensional Euler equations in Cartesian co-ordinates in conservative form 

(3) 

are transformed into the conservation law in general co-ordinates 

with a transformation of variables 

where 

and J is the Jacobian of transformation. Here the subscript and superscript indicate the variables 
in Cartesian and general co-ordinates respectively and * denote the variables multiplied by 1/J.  
It is apparent from equations (4) and (7b) that the flux in the general co-ordinates, F', is a function 
of Q and metrics, 

(8) = @YQ, G / J ,  G , lJ ,  CJJ, 5 k , / J ) ;  
and the conventional notation that the flux @' is a function of Q alone, 

@ = PI(Q), (9) 
is not a precise expression. 
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Here, as a preliminary to applying TVD-FDMs to the conservation law system (5),  some 
definitions for notation are described: for the Jacobian matrix, 

where F' is the flux in general co-ordinates not multiplied by 1/J, and for the similarity 
transformation to diagonalize it, 

A' = R'A'(R')-', A' = diag[(a')'"], (1 1) 
where (a')'" (m = 1-5) are the eigenvalues of matrix A'. The elements of thesc ?atrices_are fully 
described in Reference 8. (In our notation A', A2 and A3 are equivalent to A, B and C in their 
notation respectively.) 

TVD DIFFERENCE SCHEMES 

TVD numerical fluxes in general co-ordinates 

Generally the numerical flux function of TVD schemes can be written as - 
F:,+1,2 = (1/2)C+;,+F1+1 + AFl+1,21, 

where AF' is added to achieve the TVD property and is evaluated by 

and subscript i ,  has the following meanings: 

Our modification in Reference 7 is mainly concerned with the evaluation of AF. 
In a series of extensions of TVD-FDMs from single conservation law to a system in general co- 

o r d i n a t e ~ , ~ . ~  the mathematically non-exact relation which was probably induced by equation (9), 

has been used, and with the local linearization in space the flux divergence is expanded as follows: 

On the other hand, the exact relation has been derived in Reference 7 as follows. Transforming 
the divergence of flux into the non-conservative form as" 

and applying the chain rule to aF,(Q)/atj results in our basis 

a P  a 9 a q  i A . a Q  
at '  aQ at' J at'' 
- = - - = -  3 -  
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and also the local linearization brings the following approximation: 

Note that the difference between the conventional expression (15) and our precise expression 
(18) lies in the treatment of the Jacobian: in equation (15) 1/J remains inside the differential 
operator, while in equation (18) 1/J is outside it. In Reference 7 the comparison between solutions 
based on the conventional treatment (16) and our modified treatment (19) is shown for the flow 
problem of a triple shock wave (weak and strong shock waves and united shock wave) around the 
ONERA-M6 wing; the conventional treatment captures only the strong shock wave but misses 
the weak shock wave near the leading edge where the change of metrics is large, while our 
modified treatment captures the triple shock wave clearly. Therefore our modified treatment (19) 
is used in this paper. 

From equations (12), (13) and (19) the numerical flux function in general co-ordinates is 
described as - 

~ : ~ + 1 / 2  E (1/2)[Rl + kil+1 + { ( 1 / ~ ) ~ ~ ~ ~ } i ~ + i / 2 1 ,  (20) 

and the following two characteristic quantities can be substituted for the propagated quantity in 
the single scalar conservation law: 

where v takes the values i ,  - 1/2, i ,  + 1/2 and i, + 3/2, and 

Modified Harten-Yee TVD scheme. The second-order numerical flux function proposed by 
Yee and Harten' is used, with modification' based on the correct estimation (19), instead of using 
the straightforward extension based on equation (16). The elements of Q' denoted by 4''' are 

+:+1/2 = ( 1 / 2 ) $ ( q L / 2 ) ( g :  + sy+l)- 9 ( 4 , m , 1 / 2  + Y ~ + l / 2 b : + l / 2 ,  (23) 

with the adjustment quantity for high accuracy gy defined by 

the function II/ containing the entropy condition 

and 

Here we use the definition (21b) for ct, and the only difference between the current formulation 
and the original one5 is the evaluated point (subscript) of the Jacobian in the adjustment quantity 
for high accuracy. 
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Further, in order to make the shock waves clearer, the artificial compression,4 which is 
important in TVD schemes, is imposed by using the following Sil instead of gil: 

i i l  = (1 + weil)gil, 0 > 0, (27) 

where w is a compression parameter. 

Modi,fied Chakravarthy-Osher TVD scheme. The high-accuracy numerical flux proposed by 
Chakravarthy and Osher6 is 

mi1+ 1/2 = - ( 4 + 1 / 2  - a;+ 1/2) 

-{(l -4)/2}at+3/2-{(1 + 4)/2}6;+1/2 
+ ((1 +4)/2P;+1/2 + ((1 --4)/2}&/2, (29) 

where 4 is a parameter to control the accuracy of the scheme. We use the third order (4 = 113). 
Our modified form* in the general co-ordinate system for uf and flux-limited values ii* and df is 
as follows: 

(30) ad = Aif-l/2u,, for v = i, - 112, i, + 112, i, + 312, 

where g;-1/2 = minmodEa;-1/2, fla;+1/21, (314 

A* = (A f IAl)/2 (32) 
and f l  is a compression parameter determined in the range given by 

3-4 l<fl<---. 
1-4 

(33) 

Here we use the definition (21a) for u, and the only difference between the current formulation and 
the original one6 is the evaluated point (subscript) of the locally fixed coefficient (l/J) A' in the 
quantity added for high accuracy. 
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and 8 is a parameter; equation (34) with 8 = 0 is an explicit scheme and with 8 # 0 is an implicit 
scheme. 

The flux on the left-hand side is linearized in time as follows: 

(@')"+' - (F)" + AF', (374 

(37b) AF = ( a F / a ~ y  S Q ~  = (aFi/aQ)ns@, 
and this relation is reasonable when the grid is still. If a moving grid is used, this relation no 
longer holds good because of equation (8). In this paper the case-of a stationary grid is considered. 
When (@)" is moved to the right-hand side in equation (34), AF' is left on the left-hand side. For 
the left-hand side the numerical flux function for the first order is used and is written by equation 
(20) with 

Q ) : I + l / ~  =-  1 4 1 + 1 / 2 1 ~ i l + 1 / 2  (38) 

if the entropy condition is excluded. 
From the above, either operator solving SQ" or d@ can be constituted. Here the latter, the 

conventional one of Yee and Harten,5 is used for convenience, since the left-hand-side operator 
can be considered only as a tool to reach the steady state, the right-hand side. The conventional 
implicit operator is the same as the result of the next approximation for the numerical viscosity: 

((1/J)R'QP')i,+ 112 = - C(l/J)R'IA'I(R')-'lil+ 1/2Aij+ 1/2Q (394 

- - (diag CmaxI m (a1)" I I >il + 1/2AiI + 112 Q. (394 

Although the approximation (39c) is equivalent to the use of the non-exact relation (15), it does 
not induce large error in the two-point numerical flux for the first order. Moreover, since the left- 
hand-side operator is less than first-order accurate if using the approximation (39b), equation 
(39c) matters little. Locally linearizing the coefficients of equation (39c), applying equation (37b) 
and further adopting an AD1 form results in the LCI (linearized conservative implicit)-AD1 form5 

[I + eH!+ 1/2. j , k  - 1/2, j , k l  [I + j +  1 / Z , k  - j- 1 / 2 , k l  

X [I+138H&k+1/2 -138H;j,k-l/2]6@ - * 
= - { ~ 1 ~ @ ~ ~ l / 2 , j , k ~ F ~ ~ l / 2 , j , ~ ~  2 [ @ 2 n  i , j + l / 2 , k - F ? T - 1 / Z , k l  

+ l3 cF'iY. k + 112 - F:T, k - 1/2 1 } (40) 

(41) 

(42) 

where 

HiI* l /2  = (1/2)(A:l* 1 + W l  * l/Z)n, 

n'il * 112 = - {diag Cmax rn I (a')"' I 1 >il + 1/2 Ail + 1 /2  9 

with the non-standard notation 

W ~ * I / ~ ~ Q  = (1/2)[(A1aQ)il*1 + nlil* 1/28Q1. (43) 

For the steady state-the right-hand side in equation (40kwhich should be evaluated more 
carefully, our modified Harten-Yee and Chakravarthy-Osher numerical fluxes are used. 
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RESULTS AND DISCUSSION 

Conditions for numerical experiments 

The modified Harten-Yee TVD scheme and the modified Chakravarthy-Osher scheme are 
used for numerical experiments, and for comparison the Beam-Warming scheme' improved by 
Pulliam and Steger" is adopted. In order to improve the convergence rate to the steady state, we 
apply the diagonalization of the AD1 operator' and the local time stepping" At = Arref/(1 + J 1 j 3 )  

to the three schemes mentioned above. Treatments of the boundary conditions are almost the 
same as those by Pulliam and Steger." For the treatment of five-point TVD schemes over 
boundaries, the zeroth-order extrapolation for the physical value of Q is a d ~ p t e d . ~  Roe's 
averageI3 is used here to evaluate the physical values at the midpoint i +  1/2, although no 
difference is observed between solutions by Roe's average and solutions by the arithmetic 
average. 

Figure 1. Grid view around ONERAN6 wing 
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The numerical experiments are carried out for the ONERA-M6 wing. Three kinds of flow 
problems are solved: case 1, M, = 0.8398, u = 1.07"; case 2, M, = 0.8395, a = 3.06"; case 3, 
M, = 0.8372, u = 6-07"; where M, is the freestream Mach number and a is the angle of attack. In 
this sequence a triple shock wave becomes stronger in the experimental data.I4 

The grid used in our numerical experiments is of the C-H type, generated by the combination 
of conformal mappings and shearing  transformation^.'^ Figure 1 shows the grid distribution 
around the wing. The number of grid points is 191 x 33 x 24, the minimum grid cell length on the 
wing is 0-01 and the semi-span length is 1.0. 

Comparison of computing times 

Table I shows the ratio of computing times for the modified Harten-Yee TVD scheme, the 
modified Chakravarthy-Osher TVD scheme and the Beam-Warming scheme. For each TVD 

Table I. Comparison of computing times 

Yee-Harten Chakravarthy-Osher Beam-Warming 
implicit explicit implicit explicit implicit 

1.48 1.22 1.70 1.43 1.0 

o=o.o 0.1.0 0=2.0 0 = 3 . 0  

i o  
Figure 2. Change of solutions with compression parameter in case of Harten-Yee numerical flux (M, = 04395, 

u = 3.06"). Isobaric contours on upper wing surface and C, distributions 
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scheme the explicit (0 = 0 in equation (40)) and implicit (0 = 1) methods are compared. These 
data were obtained on a VP-400 vector computer. 

From the table the TVD schemes seem to be time-consuming, but this is a fairly minor issue 
because the computing time greatly depends on the coding technique. The more important point 
is that in the Beam-Warming scheme a process of trial and error is required to choose the proper 
values of the dissipation coefficient, while the TVD schemes have self-adjusting mechanisms (see 
later). Therefore the TVD schemes will consume less total computing time to accomplish good 
numerical simulation than the Beam-Warming scheme. 

The maximum Courant numbers are about 1 and 20 for the explicit and implicit (Atref = 1) 
methods respectively in case 2. Although higher Courant numbers can be obtained in the implicit 
methods by increasing Atref,  this does not improve the convergence rate very much. 

For the computational cost to the steady state, the implicit methods (0 = 1) are used in the 
following numerical experiments. 

Numerical experiments for artijicial compressions 

Figures 2 and 3 show the solutions by the modified Harten-Yee scheme and the modified 
Chakravarthy-Osher scheme respectively when the value of the compression parameter is 
increased in case 2. With the Harten-Yee scheme the weak shock wave grows stronger and 
stronger with the increase in the compression parameter o, while with the Chakravarthy-Osher 
scheme the weak shock wave grows stronger to some extent but does not grow beyond a certain 
limit with the increase in the compression parameter B. When the artificial compressions are not 
imposed (o = 0, B =  l), the two TVD solutions agree with each other (Figure 4). 

When o = 2 is used, the weak shock wave in the case of the Harten-Yee scheme is located at 
almost the same position as that of the solution with maximum allowable compression value 
(p = 4) in the case of the Chakravarthy-Osher scheme, and the maximum allowable value of /3 
satisfies the TVD property for a scalar hyperbolic conservation law. Consequently the com- 
pression parameters are fixed at the above values. These values are also recommended in 
References 4 and 6 respectively. 

Comparison of schemes 

Comparisons of solutions obtained by the modified Harten-Yee scheme, the modified 
Chakravarthy-Oscher scheme and the Beam-Warming scheme are shown in Figures 5 , 6  and 7 
for cases 1,2 and 3 respectively. In a series of experiments it is observed that the triple shock wave 
grows stronger as the angle of attack is increased. 

For cases 1-3 the following observations are made. 
The two TVD schemes capture the strong shock wave and united shock wave without 

oscillations, while the Beam-Warming scheme produces some oscillations near the shock waves. 
The two TVD schemes caputure the rapid expansion and weak shock wave around the leading 

edge much better than the Beam-Warming scheme. Both TVD schemes capture the rapid leading 
edge expansion more strongly than the experiments and this would be a good tendency in inviscid 
flows, while the Beam-Warming scheme injures the rapid expansion, particularly in case 3. 
According to Reference 16, the fourth-order dissipation term in the Beam-Warming scheme acts 
more than is needed at the rapid expansion and shock wave. 

The difference in solutions between the two TVD schemes is that the modified Harten-Yee 
TVD scheme captures the leading edge expansion and weak shock waves more strongly than the 
modified Chakravarthy-Osher scheme. This discrepancy is due to the flux limiters and com- 
pression parameters. 
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Figure 3. Change of solutions with compression parameter in case of Chakravarthy-Osher numerical flux (M, = 0.8395, 
a = 3.06"). Isobaric contours on upper wing surface and C, distributions 

1 I 

upper surface I lower surface 1 
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o o o o o I n I Experiments 

Figure 4. Comparisons of C, distributions between Harten-Yee and Chakravarthy-Osher numerical fluxes with no 
compression (M, = 0.8395, a = 3.06") 
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Beam-farming scheme Ilarlcn-Ycc schomc Chakravrrlhr-Ocher scheme 

Figure 5. Comparisons of schemes (M, = @8398, a = 1.07"). (a) Isobaric contours on upper wing surface. (b) C, 
distributions on wing surface 

In a series of numerical experiments the value of the dissipation coefficient in the Beam- 
Warming scheme must be adjusted with the change of flow conditions and also with the change of 
grid fineness' in order to preserve solutions from high numerical oscillations and divergence, 
while the two TVD schemes have self-adjusting mechanisms with the fixed values of the 
compression parameters recommended earlier and have the property of robustness. 
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Bea*-larmins scheme Ilarlcn-Ycc sehe*c Chakravarthv-Osher scheme 

0 

Figure 6. Comparisons of schemes (M, = 0.8395, a = 3.06"). (a) Isobaric contours on upper wing surface. (b) C, 
distributions on wing surface 

CONCLUSIONS 

An improved treatment for the TVD numerical flux functions in general co-ordinates is presented 
in more detail than in our earlier paper.' This improvement affects the higher-order numerical 
flux function terms. Here the modifications for the Harten-Yee numerical flux and the 
Chakravarthy-Osher numerical flux are presented and applied to three-dimensional inviscid 
flows around the ONERA-M6 wing. 
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Beam-lamins scheme Harten-Yee schema Chakravarthy-Osher scheme 

Figure 7. Comparisons of schemes ( M ,  = 0.8372, a = 6.07”). (a) Isobaric contours on upper wing surface. (b) C, 
distributions on wing surface 

The numerical results indicate that it is important to use a suitable artificial compression 
parameter in order to obtain more accurate solutions around the leading edge of the wing. 

The two TVD numerical fluxes give excellent results: they capture the shock wave without 
numerical oscillations, they capture the rapid expansion around the leading edge sharply, they 
have self-adjusting mechanisms regarding numerical viscosity and they also have robustness. The 
third feature more than compensates for the additional operations required. 
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